Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
iScience ; 26(12): 108425, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38034363

RESUMO

Bird eggs possess a mineralized eggshell with a soft underlying fibrous membrane. These dissimilar material layers successfully evolved a structural attachment to each other as a conserved avian reproduction strategy essential to avian embryonic development, growth, and hatching of the chick. To understand how organic membrane fibers attach to shell mineral (calcite), 3D multiscale imaging including X-ray and electron tomography coupled with deep learning-based feature segmentation was used to show how membrane fibers are organized and anchored into shell mineral. Whole fibers embed into mineral across the microscale, while fine mineral projections (granules/spikes) insert into fiber surfaces at the nanoscale, all of which provides considerable surface area and multiscale anchorage at the organic-inorganic interface between the fibrous membrane and the shell. Such a reciprocal anchorage system occurring at two different length scales between organic fibers and inorganic mineral provides a secure attachment mechanism for avian eggshell integrity across two dissimilar materials.

2.
Bone ; 176: 116886, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37634682

RESUMO

X-linked hypophosphatemia (XLH) is an inherited disorder caused by inactivating mutations in the PHEX gene leading to renal phosphate wasting, rickets and osteomalacia. XLH is also associated with dentoalveolar mineralization defects in tooth enamel, dentin and cementum, and in alveolar bone, which lead to an increased prevalence of dental abscesses, periodontal disease and tooth loss. Genetic mouse experiments, and deficiencies in XLH patient therapies where treatments do not fully ameliorate mineralization defects, suggest that other pathogenic mechanisms may exist in XLH. The mineralization-inhibiting, secreted extracellular matrix phosphoprotein osteopontin (OPN, gene Spp1) is a substrate for the PHEX enzyme whereby extensive and inactivating degradation of inhibitory OPN by PHEX facilitates mineralization. Conversely, excess OPN accumulation in skeletal and dental tissues - for example in XLH where inactivating mutations in the PHEX gene limit degradation of inhibitory OPN, or as occurs in Fgf23-null mice - contributes to mineralization defects. We hypothesized that Spp1/OPN ablation in Hyp mice (a mouse model for XLH) would reduce dentoalveolar mineralization defects. Immunostaining revealed increased OPN in Hyp vs. wild-type (WT) alveolar bone, particularly in osteocyte lacunocanalicular networks where Hyp mice have characteristic hypomineralized peri-osteocytic lesions (POLs). Micro-computed tomography and histology showed that ablation of Spp1 in Hyp mice (Hyp;Spp1-/-) on a normal diet did not ameliorate bulk defects in enamel, dentin, or alveolar bone. On a high-phosphate diet, both Hyp and Hyp;Spp1-/- mice showed improved mineralization of enamel, dentin, and alveolar bone. Silver staining indicated Spp1 ablation did not improve alveolar or mandibular bone osteocyte POLs in Hyp mice; however, they were normalized by a high-phosphate diet in both Hyp and Hyp;Spp1-/- mice, although inducing increased OPN. Collectively, these data indicate that despite changes in OPN content in the dentoalveolar mineralized tissues, there exist other compensatory mineralization mechanisms that arise from knockout of Spp1/OPN in the Hyp background.


Assuntos
Doenças Ósseas , Calcinose , Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Animais , Camundongos , Osteopontina , Microtomografia por Raio-X , Camundongos Knockout , Fosfatos
3.
Bone ; 174: 116818, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295663

RESUMO

The hallmark of enthesis architecture is the 3D compositional and structural gradient encompassing four tissue zones - tendon/ligament, uncalcified fibrocartilage, calcified fibrocartilage and bone. This functional gradient accommodates the large stiffness differential between calcified bone and uncalcified tendon/ligament. Here we analyze in 3D the organization of the mouse Achilles enthesis and mineralizing Achilles tendon in comparison to lamellar bone. We use correlative, multiscale high-resolution volume imaging methods including µCT with submicrometer resolution and FIB-SEM tomography (both with deep learning-based image segmentation), and TEM and SEM imaging, to describe ultrastructural features of physiologic, age-related and aberrant mineral patterning. We applied these approaches to murine wildtype (WT) Achilles enthesis tissues to describe in normal calcifying fibrocartilage a crossfibrillar mineral tessellation pattern similar to that observed in lamellar bone, but with greater variance in mineral tesselle morphology and size. We also examined Achilles enthesis structure in Hyp mice, a murine model for the inherited osteomalacic disease X-linked hypophosphatemia (XLH) with calcifying enthesopathy. In Achilles enthesis fibrocartilage of Hyp mice, we show defective crossfibrillar mineral tessellation similar to that which occurs in Hyp lamellar bone. At the cellular level in fibrocartilage, unlike in bone where enlarged osteocyte mineral lacunae are found as peri-osteocytic lesions, mineral lacunar volumes for fibrochondrocytes did not differ between WT and Hyp mice. While both WT and Hyp aged mice demonstrate Achilles tendon midsubstance ectopic mineralization, a consistently defective mineralization pattern was observed in Hyp mice. Strong immunostaining for osteopontin was observed at all mineralization sites examined in both WT and Hyp mice. Taken together, this new 3D ultrastructural information describes details of common mineralization trajectories for enthesis, tendon and bone, which in Hyp/XLH are defective.


Assuntos
Tendão do Calcâneo , Calcinose , Entesopatia , Raquitismo Hipofosfatêmico Familiar , Camundongos , Animais , Raquitismo Hipofosfatêmico Familiar/patologia , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/patologia , Entesopatia/diagnóstico por imagem , Entesopatia/patologia , Calcinose/patologia , Fibrocartilagem/patologia , Minerais
4.
Pharmaceutics ; 15(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37111573

RESUMO

The design of hydrogels that combine both the biochemical cues needed to direct seeded cellular functions and mineralization to provide the structural and mechanical properties approaching those of mineralized native bone extracellular matrix (ECM) represents a significant challenge in bone tissue engineering. While fibrous hydrogels constituting of collagen or fibrin (and their hybrids) can be considered as scaffolds that mimic to some degree native bone ECM, their insufficient mechanical properties limit their application. In the present study, an automated gel aspiration-ejection (automated GAE) method was used to generate collagen-fibrin hybrid gel scaffolds with micro-architectures and mechanical properties approaching those of native bone ECM. Moreover, the functionalization of these hybrid scaffolds with negatively charged silk sericin accelerated their mineralization under acellular conditions in simulated body fluid and modulated the proliferation and osteoblastic differentiation of seeded MC3T3-E1 pre-osteoblastic cells. In the latter case, alkaline phosphatase activity measurements indicated that the hybrid gel scaffolds with seeded cells showed accelerated osteoblastic differentiation, which in turn led to increased matrix mineralization. In summary, the design of dense collagen-fibrin hybrid gels through an automated GAE process can provide a route to tailoring specific biochemical and mechanical properties to different types of bone ECM-like scaffolds, and can provide a model to better understand cell-matrix interactions in vitro for bioengineering purposes.

6.
J Struct Biol X ; 6: 100057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35072054

RESUMO

Structural hierarchy of bone - observed across multiple scales and in three dimensions (3D) - is essential to its mechanical performance. While the mineralized extracellular matrix of bone consists predominantly of carbonate-substituted hydroxyapatite, type I collagen fibrils, water, and noncollagenous organic constituents (mainly proteins and small proteoglycans), it is largely the 3D arrangement of these inorganic and organic constituents at each length scale that endow bone with its exceptional mechanical properties. Focusing on recent volumetric imaging studies of bone at each of these scales - from the level of individual mineralized collagen fibrils to that of whole bones - this graphical review builds upon and re-emphasizes the original work of James Bell Pettigrew and D'Arcy Thompson who first described the ubiquity of spiral structure in Nature. Here we illustrate and discuss the omnipresence of twisted, curved, sinusoidal, coiled, spiraling, and braided motifs in bone in at least nine of its twelve hierarchical levels - a visualization undertaking that has not been possible until recently with advances in 3D imaging technologies (previous 2D imaging does not provide this information). From this perspective, we hypothesize that the twisting motif occurring across each hierarchical level of bone is directly linked to enhancement of function, rather than being simply an energetically favorable way to assemble mineralized matrix components. We propose that attentive consideration of twists in bone and the skeleton at different scales will likely develop, and will enhance our understanding of structure-function relationships in bone.

7.
J Struct Biol ; 214(1): 107823, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34915130

RESUMO

We review here the Stenciling Principle for extracellular matrix mineralization that describes a double-negative process (inhibition of inhibitors) that promotes mineralization in bone and other mineralized tissues, whereas the default condition of inhibition alone prevents mineralization elsewhere in soft connective tissues. The stenciling principle acts across multiple levels from the macroscale (skeleton/dentition vs soft connective tissues), to the microscale (for example, entheses, and the tooth attachment complex where the soft periodontal ligament is situated between mineralized tooth cementum and mineralized alveolar bone), and to the mesoscale (mineral tessellation). It relates to both small-molecule (e.g. pyrophosphate) and protein (e.g. osteopontin) inhibitors of mineralization, and promoters (enzymes, e.g. TNAP, PHEX) that degrade the inhibitors to permit and regulate mineralization. In this process, an organizational motif for bone mineral arises that we call crossfibrillar mineral tessellation where mineral formations - called tesselles - geometrically approximate prolate ellipsoids and traverse multiple collagen fibrils (laterally). Tesselle growth is directed by the structural anisotropy of collagen, being spatially restrained in the shorter transverse tesselle dimensions (averaging 1.6 × 0.8 × 0.8 µm, aspect ratio 2, length range 1.5-2.5 µm). Temporo-spatially, the tesselles abut in 3D (close ellipsoid packing) to fill the volume of lamellar bone extracellular matrix. Poorly mineralized interfacial gaps between adjacent tesselles remain discernable even in mature lamellar bone. Tessellation of a same, small basic unit to form larger structural assemblies results in numerous 3D interfaces, allows dissipation of critical stresses, and enables fail-safe cyclic deformations. Incomplete tessellation in osteomalacia/odontomalacia may explain why soft osteomalacic bones buckle and deform under loading.


Assuntos
Calcinose , Raquitismo Hipofosfatêmico Familiar , Calcificação Fisiológica/fisiologia , Calcinose/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Raquitismo Hipofosfatêmico Familiar/metabolismo , Feminino , Humanos , Masculino , Minerais/metabolismo
8.
Mater Sci Eng C Mater Biol Appl ; 123: 112010, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812629

RESUMO

A truly bioinspired approach to design optimization should follow the energetically favorable natural paradigm of "minimum inventory with maximum diversity". This study was inspired by constructive regression of trabecular bone - a natural process of network connectivity optimization occurring early in skeletal development. During trabecular network optimization, the original excessively connected network undergoes incremental pruning of redundant elements, resulting in a functional and adaptable structure operating at lowest metabolic cost. We have recapitulated this biological network topology optimization algorithm by first designing in silico an excessively connected network in which elements are dimension-independent linear connections among nodes. Based on bioinspired regression principles, least-loaded connections were iteratively pruned upon simulated loading. Evolved networks were produced along this optimization trajectory when pre-set convergence criteria were met. These biomimetic networks were compared to each other, and to the reference network derived from mature trabecular bone. Our results replicated the natural network optimization algorithm in uniaxial compressive loading. However, following triaxial loading, the optimization algorithm resulted in lattice networks that were more stretch-dominated than the reference network, and more capable of uniform load distribution. As assessed by 3D printing and mechanical testing, our heuristic network optimization procedure opens new possibilities for parametric design.


Assuntos
Osso e Ossos , Impressão Tridimensional , Algoritmos , Biomimética , Simulação por Computador
9.
Elife ; 92020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33295868

RESUMO

Protein phosphorylation, critical for cellular regulatory mechanisms, is implicated in various diseases. However, it remains unknown whether heterogeneity in phosphorylation of key structural proteins alters tissue integrity and organ function. Here, osteopontin phosphorylation level declined in hypo- and hyper- phosphatemia mouse models exhibiting skeletal deformities. Phosphorylation increased cohesion between osteopontin polymers, and adhesion of osteopontin to hydroxyapatite, enhancing energy dissipation. Fracture toughness, a measure of bone's mechanical competence, increased with ex-vivo phosphorylation of wildtype mouse bones and declined with ex-vivo dephosphorylation. In osteopontin-deficient mice, global matrix phosphorylation level was not associated with toughness. Our findings suggest that phosphorylated osteopontin promotes fracture toughness in a dose-dependent manner through increased interfacial bond formation. In the absence of osteopontin, phosphorylation increases electrostatic repulsion, and likely protein alignment and interfilament distance leading to decreased fracture resistance. These mechanisms may be of importance in other connective tissues, and the key to unraveling cell-matrix interactions in diseases.


Assuntos
Osso e Ossos/fisiopatologia , Matriz Extracelular/fisiologia , Fraturas Ósseas/fisiopatologia , Osteopontina/metabolismo , Animais , Fraturas Ósseas/metabolismo , Camundongos , Fosforilação , Estresse Mecânico
11.
JBMR Plus ; 4(8): e10378, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32803110

RESUMO

Matrix extracellular phosphoglycoprotein (MEPE) is expressed in bone and teeth where it has multiple functions. The C-terminus of MEPE contains a mineral-binding, acidic serine- and aspartate-rich motif (ASARM) that is also present in other noncollagenous proteins of mineralized tissues. MEPE-derived ASARM peptides function in phosphate homeostasis and direct inhibition of bone mineralization in a phosphorylation-dependent manner. MEPE is phosphorylated by family with sequence similarity 20, member C (FAM20C), which is the main kinase phosphorylating secreted phosphoprotein. Although the functional importance of protein phosphorylation status in mineralization processes has now been well-established for secreted bone and tooth proteins (particularly for osteopontin), the phosphorylation pattern of MEPE has not been previously determined. Here we provide evidence for a very high phosphorylation level of this protein, reporting on the localization of 31 phosphoresidues in human MEPE after coexpression with FAM20C in HEK293T cells. This includes the finding that all serine residues located in the canonical target sequence of FAM20C (Ser-x-Glu) were phosphorylated, thus establishing the major target sites for this kinase. We also show that MEPE has numerous other phosphorylation sites, these not being positioned in the canonical phosphorylation sequence. Of note, and underscoring a possible important function in mineralization biology, all nine serine residues in the ASARM were phosphorylated, even though only two of these were positioned in the Ser-x-Glu sequence. The presence of many phosphorylated amino acids in MEPE, and particularly their high density in the ASARM motif, provides an important basis for the understanding of structural and functional interdependencies in mineralization and phosphate homeostasis. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

12.
J Struct Biol ; 212(2): 107603, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32805412

RESUMO

In bone, structural components such as mineral extend across length scales to provide essential biomechanical functions. Using X-ray micro-computed tomography (µCT), and focused ion beam scanning electron microscopy (FIB-SEM) in serial-surface-view mode, together with 3D reconstruction, entire mouse skeletons and small bone tissue volumes were examined in normal wildtype (WT) and mutant Hyp mice (an animal model for X-linked hypophosphatemia/XLH, a disease with severe hypomineralization of bone). 3D thickness maps of the skeletons showed pronounced irregular thickening and abnormalities of many skeletal elements in Hyp mice compared to WT mice. At the micro- and nanoscale, near the mineralization front in WT tibial bone volumes, mineralization foci grow as expanding prolate ellipsoids (tesselles) to abut and pack against one another to form a congruent and contiguous mineral tessellation pattern within collagen bundles that contributes to lamellar periodicity. In the osteomalacic Hyp mouse bone, mineralization foci form and begin initial ellipsoid growth within normally organized collagen assembly, but their growth trajectory aborts. Mineralization-inhibiting events in XLH/Hyp (low circulating serum phosphate, and increased matrix osteopontin) combine to result in decreased mineral ellipsoid tessellation - a defective mineral-packing organization that leaves discrete mineral volumes isolated in the extracellular matrix such that ellipsoid packing/tessellation is not achieved. Such a severely altered mineralization pattern invariably leads to abnormal compliance, other aberrant biomechanical properties, and altered remodeling of bone, all of which indubitably lead to macroscopic bone deformities and anomalous mechanical performance in XLH/Hyp. Also, we show the relationship of osteocytes and their cell processes to this mineralization pattern.


Assuntos
Calcificação Fisiológica/fisiologia , Raquitismo Hipofosfatêmico Familiar/metabolismo , Minerais/metabolismo , Tíbia/metabolismo , Tíbia/fisiologia , Animais , Modelos Animais de Doenças , Raquitismo Hipofosfatêmico Familiar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia/métodos , Osteócitos/metabolismo , Osteócitos/fisiologia , Osteopontina/metabolismo , Microtomografia por Raio-X/métodos
13.
J Struct Biol ; 212(1): 107598, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783967

RESUMO

Biomineralization research examines structure-function relations in all types of exo- and endo-skeletons and other hard tissues of living organisms, and it relies heavily on 3D imaging. Segmentation of 3D renderings of biomineralized structures has long been a bottleneck because of human limitations such as our available time, attention span, eye-hand coordination, cognitive biases, and attainable precision, amongst other limitations. Since recently, some of these routine limitations appear to be surmountable thanks to the development of deep-learning algorithms for biological imagery in general, and for 3D image segmentation in particular. Many components of deep learning often appear too abstract for a life scientist. Despite this, the basic principles underlying deep learning have many easy-to-grasp commonalities with human learning and universal logic. This primer presents these basic principles in what we feel is an intuitive manner, without relying on prerequisite knowledge of informatics and computer science, and with the aim of improving the reader's general literacy in artificial intelligence and deep learning. Here, biomineralization case studies are presented to illustrate the application of deep learning for solving segmentation and analysis problems of 3D images ridden by various artifacts, and/or which are plainly difficult to interpret. The presented portfolio of case studies includes three examples of imaging using micro-computed tomography (µCT), and three examples using focused-ion beam scanning electron microscopy (FIB-SEM), all on mineralized tissues. We believe this primer will expand the circle of users of deep learning amongst biomineralization researchers and other life scientists involved with 3D imaging, and will encourage incorporation of this powerful tool into their professional skillsets and to explore it further.


Assuntos
Biomineralização/fisiologia , Imageamento Tridimensional/métodos , Algoritmos , Animais , Inteligência Artificial , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
14.
J Struct Biol ; 212(1): 107592, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32736073

RESUMO

The mineralized extracellular matrix of bone is an organic-inorganic nanocomposite consisting primarily of carbonated hydroxyapatite, fibrous type I collagen, noncollagenous proteins, proteoglycans, and diverse biomolecules such as pyrophosphate and citrate. While much is now known about the mineralization-regulating role of pyrophosphate, less is known about the function of citrate. In order to assess the effect of negatively charged citrate on collagen mineralization, citrate-functionalized, bone osteoid-mimicking dense collagen gels were exposed to simulated body fluid for up to 7 days to examine the multiscale evolution of intra- and interfibrillar collagen mineralization. Here, we show by increases in methylene blue staining that the net negative charge of collagen can be substantially augmented through citrate functionalization. Structural and compositional analyses by transmission and scanning electron microscopy (including X-ray microanalysis and electron diffraction), and atomic force microscopy, all demonstrated that citrate-functionalized collagen fibrils underwent extensive intrafibrillar mineralization within 12 h in simulated body fluid. Time-resolved, high-resolution transmission electron microscopy confirmed the temporal evolution of intrafibrillar mineralization of single collagen fibrils. Longer exposure to simulated body fluid resulted in additional interfibrillar mineralization, all through an amorphous-to-crystalline transformation towards apatite (assessed by X-ray diffraction and attenuated total reflection-Fourier-transform infrared spectroscopy). Calcium deposition assays indicated a citrate concentration-dependent temporal increase in mineralization, and micro-computed tomography confirmed that >80 vol% of the collagen in the gels was mineralized by day 7. In conclusion, citrate effectively induces mesoscale intra- and interfibrillar collagen mineralization, a finding that advances our understanding of the role of citrate in mineralized tissues.


Assuntos
Calcificação Fisiológica/fisiologia , Ácido Cítrico/metabolismo , Colágeno Tipo I/metabolismo , Géis/metabolismo , Animais , Apatitas/metabolismo , Biomimética/métodos , Osso e Ossos/metabolismo , Durapatita/metabolismo , Matriz Extracelular/metabolismo , Microscopia Eletrônica de Varredura/métodos , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos , Microtomografia por Raio-X/métodos
15.
Chem Commun (Camb) ; 56(53): 7353-7356, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32484482

RESUMO

Vaterite helicoids [W. Jiang et al., Nat. Commun., 2017, 8, 15066] are chiral, polycrystalline suprastructures grown in the presence of the amino acids, aspartic (Asp) or glutamic (Glu) acid, that are abundant in proteins regulating biomineralization. These complex objects are composed of hexagonal vaterite nanocrystals assembled as curved-edge platelets that form chiral ensembles. The sense stacked platelets is correlated with the stereochemistry of the amino acid additive: l-Asp gives counterclockwise architectures while d-Asp gives the clockwise enantiomorphs. As new layers stack, platelets become progressively inclined with respect to the substrate suface. The growth and structure of vaterite helicoids was originally evidenced by electron microscopy and atomic force microscopy. Here, we develop an optical model for describing polarized light transmission through helicoids as measured by Mueller matrix polarimetry. The close agreement between experimental measurements and simulation confirms that the propellor-like organization of inclined platelets creates optically active structures determined by growth additive stereochemistry. The microscopy employed demonstrates the information that can be obtained by complete polarimetry using a camera as a light detector, a technique that could be applied profitably to all manner of complex structures organized from anisotropic particles.


Assuntos
Carbonato de Cálcio/química , Microscopia de Polarização/instrumentação , Microscopia de Polarização/métodos , Nanoestruturas/química , Anisotropia , Ácido Aspártico/química , Cristalização , Ácido Glutâmico/química , Humanos , Modelos Teóricos , Conformação Molecular , Relação Estrutura-Atividade , Propriedades de Superfície
16.
J Bone Miner Res ; 35(10): 2032-2048, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32501585

RESUMO

PHEX is predominantly expressed by bone and tooth-forming cells, and its inactivating mutations in X-linked hypophosphatemia (XLH) lead to renal phosphate wasting and severe hypomineralization of bones and teeth. Also present in XLH are hallmark hypomineralized periosteocytic lesions (POLs, halos) that persist despite stable correction of serum phosphate (Pi ) that improves bulk bone mineralization. In XLH, mineralization-inhibiting osteopontin (OPN, a substrate for PHEX) accumulates in the extracellular matrix of bone. To investigate how OPN functions in Hyp mice (a model for XLH), double-null (Hyp;Opn-/- ) mice were generated. Undecalcified histomorphometry performed on lumbar vertebrae revealed that Hyp;Opn-/- mice had significantly reduced osteoid area/bone area (OV/BV) and osteoid thickness of trabecular bone as compared to Hyp mice, despite being as hypophosphatemic as Hyp littermate controls. However, tibias examined by synchrotron radiation micro-CT showed that mineral lacunar volumes remained abnormally enlarged in these double-null mice. When Hyp;Opn-/- mice were fed a high-Pi diet, serum Pi concentration increased, and OV/BV and osteoid thickness normalized, yet mineral lacunar area remained abnormally enlarged. Enpp1 and Ankh gene expression were increased in double-null mice fed a high-Pi diet, potentially indicating a role for elevated inhibitory pyrophosphate (PPi ) in the absence of OPN. To further investigate the persistence of POLs in Hyp mice despite stable correction of serum Pi , immunohistochemistry for OPN on Hyp mice fed a high-Pi diet showed elevated OPN in the osteocyte pericellular lacunar matrix as compared to Hyp mice fed a control diet. This suggests that POLs persisting in Hyp mice despite correction of serum Pi may be attributable to the well-known upregulation of mineralization-inhibiting OPN by Pi , and its accumulation in the osteocyte pericellular matrix. This study shows that OPN contributes to osteomalacia in Hyp mice, and that genetic ablation of OPN in Hyp mice improves the mineralization phenotype independent of systemic Pi -regulating factors. © 2020 American Society for Bone and Mineral Research.


Assuntos
Calcificação Fisiológica , Raquitismo Hipofosfatêmico Familiar , Osteopontina/genética , Animais , Raquitismo Hipofosfatêmico Familiar/genética , Camundongos , Camundongos Knockout , Endopeptidase Neutra Reguladora de Fosfato PHEX
17.
J Struct Biol ; 210(2): 107489, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142754

RESUMO

Mammalian otoconia of the inner ear vestibular apparatus are calcium carbonate-containing mineralized structures critical for maintaining balance and detecting linear acceleration. The mineral phase of otoconia is calcite, which coherently diffracts X-rays much like a single-crystal. Otoconia contain osteopontin (OPN), a mineral-binding protein influencing mineralization processes in bones, teeth and avian eggshells, for example, and in pathologic mineral deposits. Here we describe mineral nanostructure and the distribution of OPN in mouse otoconia. Scanning electron microscopy and atomic force microscopy of intact and cleaved mouse otoconia revealed an internal nanostructure (~50 nm). Transmission electron microscopy and electron tomography of focused ion beam-prepared sections of otoconia confirmed this mineral nanostructure, and identified even smaller (~10 nm) nanograin dimensions. X-ray diffraction of mature otoconia (8-day-old mice) showed crystallite size in a similar range (73 nm and smaller). Raman and X-ray absorption spectroscopy - both methods being sensitive to the detection of crystalline and amorphous forms in the sample - showed no evidence of amorphous calcium carbonate in these mature otoconia. Scanning and transmission electron microscopy combined with colloidal-gold immunolabeling for OPN revealed that this protein was located at the surface of the otoconia, correlating with a site where surface nanostructure was observed. OPN addition to calcite growing in vitro produced similar surface nanostructure. These findings provide details on the composition and nanostructure of mammalian otoconia, and suggest that while OPN may influence surface rounding and surface nanostructure in otoconia, other incorporated proteins (also possibly including OPN) likely participate in creating internal nanostructure.


Assuntos
Carbonato de Cálcio/química , Osteopontina/química , Membrana dos Otólitos/química , Animais , Biomineralização , Camundongos , Nanoestruturas/química , Difração de Raios X
18.
PLoS One ; 15(2): e0228503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32074120

RESUMO

The plasma protein fetuin-A mediates the formation of protein-mineral colloids known as calciprotein particles (CPP)-rapid clearance of these CPP by the reticuloendothelial system prevents errant mineral precipitation and therefore pathological mineralization (calcification). The mutant mouse strain D2,Ahsg-/- combines fetuin-A deficiency with the calcification-prone DBA/2 genetic background, having a particularly severe compound phenotype of microvascular and soft tissue calcification. Here we studied mechanisms leading to soft tissue calcification, organ damage and death in these mice. We analyzed mice longitudinally by echocardiography, X-ray-computed tomography, analytical electron microscopy, histology, mass spectrometry proteomics, and genome-wide microarray-based expression analyses of D2 wildtype and Ahsg-/- mice. Fetuin-A-deficient mice had calcified lesions in myocardium, lung, brown adipose tissue, reproductive organs, spleen, pancreas, kidney and the skin, associated with reduced growth, cardiac output and premature death. Importantly, early-stage calcified lesions presented in the lumen of the microvasculature suggesting precipitation of mineral containing complexes from the fluid phase of blood. Genome-wide expression analysis of calcified lesions and surrounding (not calcified) tissue, together with morphological observations, indicated that the calcification was not associated with osteochondrogenic cell differentiation, but rather with thrombosis and fibrosis. Collectively, these results demonstrate that soft tissue calcification can start by intravascular mineral deposition causing microvasculopathy, which impacts on growth, organ function and survival. Our study underscores the importance of fetuin-A and related systemic regulators of calcified matrix metabolism to prevent cardiovascular disease, especially in dysregulated mineral homeostasis.


Assuntos
Calcinose/complicações , Calcinose/genética , Microvasos/patologia , Insuficiência de Múltiplos Órgãos/genética , Calcificação Vascular/genética , alfa-2-Glicoproteína-HS/genética , Animais , Calcinose/metabolismo , Calcinose/patologia , Cálcio/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Microcirculação/fisiologia , Microvasos/metabolismo , Minerais/metabolismo , Sistema Fagocitário Mononuclear/metabolismo , Sistema Fagocitário Mononuclear/patologia , Insuficiência de Múltiplos Órgãos/patologia , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , alfa-2-Glicoproteína-HS/deficiência
19.
Acta Biomater ; 106: 351-359, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32035283

RESUMO

Chirality seems to play a key role in mineralization. Indeed, in biominerals, the biomolecules that guide the formation and organization of inorganic crystals and help construct materials with exceptional mechanical properties, are homochiral. Here, we show that addition of homochiral l-(+)-tartaric acid improved the mechanical properties of brushite bioceramics by decreasing their crystal size, following the classic Hall-Petch strengthening effect; d-(-)-tartaric acid had the opposite effect. Adding l-(+)-Tar increased both the compressive strength (26 MPa) and the fracture toughness (0.3 MPa m1/2) of brushite bioceramics, by 33% and 62%, respectively, compared to brushite bioceramics without additives. In addition, l-(+)-tartaric acid enabled the fabrication of cements with high powder-to-liquid ratios, reaching a compressive strength and fracture toughness as high as 32.2 MPa and 0.6 MPa m1/2, respectively, approximately 62% and 268% higher than that of brushite bioceramics prepared without additives, respectively. Characterization of brushite crystals from the macro- to the atomic-level revealed that this regulation is attributable to a stereochemical matching between l-(+)-tartaric acid and the chiral steps of brushite crystals, which results in inhibition of brushite crystallization. These findings provide insight into understanding the role of chirality in mineralization, and how to control the crystallographic structure of bioceramics to achieve high-performance mechanical properties. STATEMENT OF SIGNIFICANCE: Calcium-phosphate cements are promising bone repair materials. However, their suboptimal mechanical properties limit their clinical use. Natural biominerals have remarkable mechanical properties that are the result of controlled size, shape and organization of their inorganic crystals. This is achieved by biomineralization proteins that are homochiral, composed of l- amino acids. Despite the importance of chiral l-biomolecules in biominerals, using homochiral molecules to fabricate bone cements has not been studied yet. In this study, we showed that homochiral l-(+)-tartaric acid can regulate the crystal structure and improve the mechanical properties of a calcium-phosphate cement. Hence, these findings open the door for a new way of designing strong bone cement and highlight the importance of chirality in bioceramics.


Assuntos
Fosfatos de Cálcio/química , Cerâmica/química , Tartaratos/química , Fosfatos de Cálcio/síntese química , Cerâmica/síntese química , Força Compressiva , Cristalização , Teste de Materiais , Simulação de Dinâmica Molecular , Estereoisomerismo
20.
Bone ; 132: 115190, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31843680

RESUMO

The SIBLINGs are a subfamily of the secreted calcium-binding phosphoproteins and comprise five small integrin-binding ligand N-linked glycoproteins [dentin matrix protein-1 (DMP1), secreted phosphoprotein-1 (SPP1) also called osteopontin (OPN), integrin-binding sialoprotein (IBSP) also called bone sialoprotein (BSP), matrix extracellular phosphoglycoprotein (MEPE), and dentin sialophosphoprotein (DSPP)]. Each SIBLING has at least one "acidic, serine- and aspartic acid-rich motif" (ASARM) and multiple Ser-x-Glu/pSer sequences that when phosphorylated promote binding of the protein to hydroxyapatite for regulation of biomineralization. Mendelian disorders from loss-of-function mutation(s) of the genes that encode the SIBLINGs thus far involve DSPP causing various autosomal dominant dysplasias of dentin but without skeletal disease, and DMP1 causing autosomal recessive hypophosphatemic rickets, type 1 (ARHR1). No diseases have been reported from gain-of-function mutation(s) of DSPP or DMP1 or from alterations of SPP1, IBSP, or MEPE. Herein, we describe severe hypophosphatemic osteosclerosis and hyperostosis associated with skeletal deformity, short stature, enthesopathy, tooth loss, and high circulating FGF23 levels in a middle-aged man and young woman from an endogamous family living in southern India. Both shared novel homozygous mutations within two genes that encode a SIBLING protein: stop-gain ("nonsense") DMP1 (c.556G>T,p.Glu186Ter) and missense SPP1 (c.769C>T,p.Leu266Phe). The man alone also carried novel heterozygous missense variants within two additional genes that condition mineral homeostasis and are the basis for autosomal recessive disorders: CYP27B1 underlying vitamin D dependent rickets, type 1, and ABCC6 underlying both generalized arterial calcification of infancy, type 2 and pseudoxanthoma elasticum (PXE). By immunochemistry, his bone contained high amounts of OPN, particularly striking surrounding osteocytes. We review how our patients' disorder may represent the first digenic SIBLING protein osteopathy.


Assuntos
Entesopatia , Hiperostose , Osteosclerose , Dentina , Proteínas da Matriz Extracelular/genética , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Hiperostose/genética , Índia , Pessoa de Meia-Idade , Mutação/genética , Osteopontina/genética , Osteosclerose/genética , Fosfoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...